
CCOOMMPPUUTTEERR NNEETTWWOPRKKSS

UNIT-3

ttrraahhssppoorrtt

kaayyeerrfeedback1correctionsivibha@pesu.pes.edu
VIBHA MASTI

TRANSPORT LAYER SERVICES

• Logical communication between app processes on different

hosts

actions in end systems

• Sender : breaks app messages into segments (adding headers)
,

passes to network layer ; determines segment header field
values

, passes to IP

• Receiver: reassembles segments into messages , passes to
application layer ; receives from IP

,
checks header values

,

extracts app message ,
demuxes message to app layer via

socket

TCP vs UDP

TCP : Transmission Control Protocol
• 3- way handshake (connection setup)
° Reliable

° In order
• Congestion control C buffer

, packet loss)
• Flow control crate

, acknowledgement)

UDP : User Datagram Protocol
• Unreliable

,
Connection less

° Low effort
•

no order

• no delay guarantee
• no bandwidth guarantee

MULTIPLEXING 4 DEMULTIPLEXING

• Extend host - to - host delivery to process - to - process
delivery

•

Multiplexing: handle data from multiple sockets
,
add transport

header and send transport segment to network layer Csource port
number)

• Demultiplexing: use header info to deliver received segments
to correct socket Cdestination port number)

• Port numbers : 0 to 65535 (2
"
- 1) 16 bit number

• Ports 0 to 1023 are well - known port numbers ,
restricted / reserved and cannot be used by user / 0s

•

eg : HTTP : port 80 ,
DNS : 53

,
SSH : 22

,
FTP : 21

CONNECTION LESS DEMULTIPLEXING

• UDP multiplexing / demultiplexing

•

creating socket : local port no . specified

°

Creating datagram to send into UDP socket
,
must specify

dest IP
,
dest port

• Receiving host : checks dest port in segment , directs
UDP segment to socket with same port

° Multiple different source IPs/ ports but same dest

socket → delivered to same socket ceg: http - 80)
at receiving host

#!/usr/bin/python2

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print "The server is ready to receive"

while 1:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.upper()

 serverSocket.sendto(modifiedMessage, clientAddress)

#!/usr/bin/python2

from socket import *

serverName = 'localhost'

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_DGRAM)

message = raw_input('Input lowercase sentence: ')

clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress = clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

° UDP socket identified by a two - tuple consisting of (destination
IP address

,
destination port number)

Example

UDPClient. py

UDP segment

1

UDPserver.py

→ UDP segment

94285775

95775%428

CONNECTION- ORIENTED DEMULTIPLEXING

° TCP socket : 4 tuple
- source IP

- source port
- dest Ip
- dest port

° Demux : receiver uses 4 values to direct segment to socket

. Server host : support multiple Tcp sockets simultaneously
(own 4 - tuple)

o Web servers : diff socket for each client

- non - persistent HTTP : different socket for each req
- unlike connectionless

#!/usr/bin/python2

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind(('',serverPort))

serverSocket.listen(1)

print 'The server is ready to receive'

while 1:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence)

connectionSocket.close()

#!/usr/bin/python2

from socket import *

serverName = 'localhost'

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName, serverPort))

sentence = raw_input('Input lowercase sentence: ')

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print 'From Server: ', modifiedSentence

clientSocket.close()

Example

TCPClient
. py

TCPserver.py

• TCP server application has welcoming socket that waits for
connection establishment requests from TCP clients on port 12000

demultiplexed to
different sockets

✓

comparison

. UDP : demux only using dest port no
.

. TCP : demux using 4 tuple
• Based on segment CTCP)

, datagram (UDP) header values

CONNECTION LESS TRANSPORT LAYER PROTOCOL - UDP

•
'

no frills'
,

'bare bones ' (does not add too much)

• connection less
,
unreliable , out of order,

' best effort ' ; no

guarantee

•

no handshake ; each UDP segment independent of others

• 8 byte header overhead per segment

Use of UDP

•

no RTT delay due to connection (round trip time)

• no buffer / seq / ack / c-c parameters for connection state at

sender and receiver

• small header size 18 bytes , not 20)

• no congestion control ; possibility of loss but no speed limit

at sender

Applications
• streaming multimedia
• DNS

• SNMP
• HTTP /3

• Reliability over VDP - HTTP /3
- add reliability at app layer

UDP segment Header

Sbytesfy

UDP Checksum

• detect certain errors (flipped bits)

• sender : treats UDP segment (including header fields and IP

addresses) as sequence of 16-bit ints

• Checksum : 1's comp sum of segment content , value put into
UDP checksum field

• Receiver adds checksum to computed checksum w/o 1's

comp to get string of 1 's if no errors found

° Some errors not detected

Q : checksum example
l l l l

①
iii :÷:ii÷÷÷÷÷ :
- i

wraparound
SUM I O l l l O l l l O l l l l O O

checksum O l O O O l o o o , o o o o , ,
c) 1

'S
COMP

Q : calculate checksum

l l l l lo l l
l l l l

l

① O l O O l O l O l l O O O O
'

O l

-
I

sum O l O O l O l O l l O O O O l O

checksum I O l l O l O l O O l l l l O l

verify with receiver side
l l l l lo l l l l l l l

O l O O l O l o l l O O O O O l#
i

SUM O l O O l O l O l l O O O O l O

header

checksum l O l l O l O l O O l l l l O l

l l l l l l l l l l l l l l l l

note : CRC - cyclic reliability check - algorithm

Principles of Reliable data transfer

• Unreliable channel below transport layer

• Complexity of reliable data transfer protocol depends
on characteristics of unreliable channel

° Sender and receiver know nothing about state of the other ;
ack needed

• Functions :

- rdt- sendC) : called from app layer : passes data to be delivered

by receiver's above Capp) layer
- rdt -rcvc) : called once packet arrives from receiving end of channel
- Udt - Senda : called by rdt to transfer packet over unreliable
channel

- deliver-data) : called by rdt to deliver data to app layer

receiving
Application layer sending

side side

transport layer

Network layer

BUILDING A RELIABLE DATA TRANSFER PROTOCOL

rdt 1.0

• underlying channel assumed to be perfectly reliable

Cno errors/ losses)

• event causing state transition : above horizontal line
action taken when event occurs : below horizontal line

FSM

separate Fsms for sender and receiver

rdt 2-0

•

underlying channel may flip bits (network layer) bit errors

• checksum
• recover from errors (checksum)

Acknowledgements
- Acks : receiver explicitly tells sender that pkt received

OK

- NAKS : receiver explicitly tells sender that pkt had

errors ; sender must retransmit prev . sent data

• stop and wait for ACK /NAK - one packet at a time

• Automatic Repeat Request CARQ) Protocols

FSM
create packet
← and send

←
send
NAK 9

discard

c- received

Of
no action

Tapp
T layer

FLAW send ACK

• ACK / NAK corrupted
• multiple retransmissions - duplicate packets received when
ACK/ NAK corrupted

• Solution

- packet seq no
- receiver can discard duplicates

rdt 2-1

sender receiver

• seq no to pkt
• check for duplicates

•

only 2 seq no .s
• does not know if ACK/NAK

• check if ACK /NAK corrupt received Ok

• twice as many states

sender

yseq
no

receiver

} corruptACK / NAK

rdt 2-2

• NAK - free protocol
• only ACK
• ACK for prev packet

prevpkt

I

Tretransmit

T
sends

prev

rdt 3.0

• underlying channel can also lose packets
• checksum

, seq no , Aleks
,
retransmission

• sender waits for timeout time before retransmitting (due
to loss or no ACK or delay)

• receiver specifies seq no

- more than RTT

• also called alternating-bit protocol

sender

prev

f ACK

c- no action
,

waits

in action

packet loss ack loss

duplicate ACK

(ignores)

r
ignores

premature timeout

PERFORMANCE

° Usender -

- utilisation = fraction of time sender busy
sending

-

eg : R -

- transmission channel = I Gbps link

Dprop -- prop delay
-

- 15ms

L = packet = 8000 bits

-

Dtrans -- tf
= 8,00%

= 8×10's = 8µs

30ms {

RTT -
- 2x D

prop

- 3

Us -_ LIR = 8×10
= 0.00027

4kt RTT 30+8×10-3

Solution : Pipelining
°

range of seq increased
• buffers at both ends
°

go -back - N , selective repeat

GO - BACK- N

• Sender can have upto N un - ached packets (consecutive);
window of size N CN > 1)

° K-bit sequence number

° Cumulative ACKCn) → all packets upto and including N

o timeout Cn) : retransmit # n and all higher ones

sender fsm

receiver fsm

no ACK 3

N receiver
= I

4134 In Action

sender window sender receiver

selective REPEAT

° Receiver individually acknowledges every packet (not
cumulative)

- Buffers received packets to order before sending to app

layer

• Window : N consecutive

• Timer maintained for each un tacked packet

selective Repeat

sender

• data from above

- if next seq # in window
,
send plot

° timeout Ch)

- resend # n , restart time

• Ackcn) in [send base , sendbase -1N]
- mark n as received
- if n smallest un Acked , advance window by l

receiver

• packet n in [rcv base
,
rcvbaset N - 13

- send Acklin)
- out order : buffer
- in order : deliver

°

packet n in Crcvbase - N
,
rcvbase - I]

- ACK (n)

- resent ceg: lost ACK)

° otherwise

-

ignore

Q : In 6133
,
if every 5th packet is lost

,
have to send to

packets , how many transmissions?

I 2 3 4 5 6 7

✓ ✓ ✓ ✓ ign ign

5 6 7 8 9 180
✓ V ign ign

7 8 9 10

✓ ✓ ign
9 10

✓ ✓

Q: selective repeat, if every 5th packet is lost
,
have to

send to packets , how many transmissions? Window =3

I 2 3 4 5 6 7

✓ ✓ ✓ ✓ ✓ ✓ ④
5 8 9 10
✓ ✓

g

/

✓

TRANSMISSION CONTROL PROTOCOL

• point to point (one sender , one receiver)
• reliable

,
order

• full duplex
• Mss : maximum segment size
• cumulative Acks

• pipelining ; congestion , flow control

• connection - oriented ; handshaking

TCP segment structure
• header : 20 bytes 2 bytes each port

/
next }

5 rows :

expected→ header

0

flags {reset ,
synchronisation, } data sentfinish I into TCP
d establish

length of
socket

close
handshake :

conn

syn
TCP header

sequence number

sequence number

°

byte stream " number " of first byte in segment's data
• byte numbering , not segment number

Aleks
.

seq no of expected next byte
. cumulative ACK

Out of order
° Up to implementer

Simple Telnet (port 23
- check unit 27

O

O O

O

Timeout
. TCP timeout 7 RTT (varies)

- premature timeout; unnecessary retransmissions
• too long : slow rxn to segment loss

sample RTT

° Measured time between segment transmission until ACK

receipt (ignore retransmissions)

•

Varies with every segment

Estimated RTT

• Exponential Weighted Moving Average CEWMA)

° Influence of past sample decreases exponentially
fast

• Typical : ✗ = 0.125

EstimatedRTT = (I - d) * Estimated RTT + ✗ * sampleRTT

• Timeout interval : Estimated RTT -1 safety margin
- if large var in Estimated RTT , larger safety margin

Timeout Interval = EstimatedRTT -1 4 * DevRTT

• Deviated RTT : EWMA of sample RTT 's deviation from
Estimated RTT

Dev RTT = (1-B) * DevRTT 1- p * / Sample RTT
- Estimated RTT /

f--0.25 usually

TCP Sender

i. Event : data received from app
° create segment with seq no (byte stream no . of first

data byte)
. start timer if not already on

- TimeoutInterval expiration period
- for oldest un - Allied segment

2 . Event : timeout

° retransmit segment
• restart timer

3
. Event : ACK received
°

update what is known to be tacked

• restart timer if more unasked

TCP Receiver

Retransmission scenarios

1) Lost ACK 2) Premature Timeout

3) Cumulative ACK covers for prev lost ACK

TCP Fast Retransmit

. Receipt of 3 duplicate Aleks - retransmit before
timeout

° Resend un Ached segment with smallest seq no

TCP Flow control

° Receiver controls sender so that sender does not overflow

receiver 's buffer by transmitting too fast

° TCP header : rwnd field

° Advertises free buffer space in rwnd
- Rev Buffer size set via socket options
- Auto adjusted by OS

- Typically - 4096

° sender limits amount of whacked data to the received

rwnd

TCP receiver

side buffering

TCP 3-Way Handshake

SYN
3

c
SYN + ACK

ACK
]

• Establish handshake

• Agree on connection parameters

handshake

random
number

I

CLOSING CONNECTION

• send TCP segment with FIN -_ I

• respond to received FIN with ACK

sequence of TCP states

client

server

SYN - FLOODING ATTACK

•

Large no. of SYN segments sent by attacker to a server with

different fake source IP addresses

• Servers unnecessarily start allocating buffers and resources for all SYN

requests and also sends back SYN -1 ACK segments

• Server eventually runs out of resources; may crash

• Denial-of-service attack Cto genuine clients)

congestion control

•

congestion : too many sources sending too many packets faster than
network can handle

° Different from flow control

• Consequences : lost packets (buffer overflow at routers
, long delays

(queueing in router buffers)

• Causes q costs of congestion : 3 scenarios of increasing complexities

fanatic 1 : Two senders
,
a Router with Infinite Buffers

• Host A sending data at rate tin bytes 1sec

• Host B sending data at rate tin bytes 1sec

• Router outgoing link capacity R , infinite buffer

• Graph a : per- connection throughput L bytes/see at receiver) as
a function of ✗ in

• While Xin E R/2 , throughput at receiver 's end = tin

• When tin > R/2 , the throughput remains R/2 (limit due to

sharing capacity)

• Graph b : Average delay for packet to arrive at receiver

• Average no . of queued packets unbounded , delays unbounded
as ✗ in → R/2

fanatic 2 : Two senders
,
a Router with Finite Buffers

• Packets arriving to full buffer are dropped

• Retransmissions for lost / dropped packets

• Xin : rate at which application sends data into socket

• ✗
'

in : rate
at which transport layer sends segments (original

data + retransmissions) offered load to the network

• Graph a : ideal case of sender transmitting only when buffers
are free ✗ in = tin

•

Graph b : retransmission done only when packet is known for

certain to be lost Clarge timeout ; not very practical) in graph ,
43rd of packets are retransmitted in each half)

• Graph c : premature timeout for retransmission , duplicates at
receiver end

Scenario 3 : Four Senders
,
Routers with Finite Buffers

,
Multihop Paths

• Low traffic
, as ✗ in increases

,
✗out increases

•

High traffic , hosts compete at routers

CONGESTION CONTROL

• Sender keeps track of congestion window variable Ccwnd) such

that the amount of un - ACK ed segments at the sender cannot

exceed min { cwnd , rwnd}

• Sender 's send rate = cwnd bytes / see cignoring rwnd)
RTT

• Size of cwnd changes based on packet loss Cregulated at sender

side)

• TCP said to be self - clocking

• TCP sender 's rate should be decreased on packet loss as it

indicates congestion ccwnd should decrease)

° TCP sender's rate should be increased when an ACK arrives for

a previously un Acked packet Ccwnd should increase)

• TCP congestion control Algorithm
- Slow start

- congestion avoidance
- Fast recovery

1- slow start

• cwnd initial ised to 1-MSS
,
rate = IMSS / RTT bytes / Sec

• After every ACK
,
cwnd increases by 1

, resulting in doubling of
cwnd every RTT slow start

• First RTT
,
cwnd =L ; after ACK

,
cwnd = 2 ; after both received

and Acked
,
cwnd--4 and so on exponential growth

° If there is a loss event (due to timeout)
,
cwnd reset to 1 and

sets threshold value ssthresh to cwnd /2

• When cwnd = ssthresh
,
slow start ends and congestion avoidance

starts

• If 3 duplicate ACKS arrive
,
TCP enters fast recovery state

• Shown in FSM below

2. congestion Avoidance

° When this state reached
,
value of cwnd equal to half its

value before congestion encountered

• value of cwnd increases by 1 MSS every RTT C MSS / cwnd

multiples of MSS after every AIK)

• When timeout occurs
,
ssthresh set to half of cwnd and

cwnd = I Mss

• When triple duplicate ACK occurs
,
cwnd is halved and ssthread

is set to half cwnd when triple duplicate Acks were received
,

then fast recovery state

3. Fast Recovery

• Value of cwnd increased by 1 MSS for every duplicate Acks until
3

• If ACK for missing segment arrives , TCP deflates cwnd and enters

congestion avoidance

• Timeout : cwnd reset to 1
,
ssthresh = old cwnd / 2 , enters slow start

state

• Old version : TCP Tahoe whether timeout or triple duplicate ,
cwnd always reset to 1 Mss and entered slow start

• New version : TCP Reno incorporates fast recovery

ADDITIVE INCREASE
,
MULTIPLICATIVE DECREASE

• AIMD form of congestion control

• Sawtooth

